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In a pre-test—post-test cluster randomized trial, one of the methods commonly used to
detect an intervention effect involves controlling pre-test scores and other related
covariates while estimating an intervention effect at post-test. In many applications in
education, the total post-test and pre-test scores, ignoring measurement error, are used
as response variable and covariate, respectively, to estimate the intervention effect.
However, these test scores are frequently subject to measurement error, and statistical
inferences based on the model ignoring measurement error can yield a biased estimate of
the intervention effect. When multiple domains exist in test data, it is sometimes more
informative to detect the intervention effect for each domain than for the entire test. This
paper presents applications of the multilevel multidimensional item response model with
measurement error adjustments in a response variable and a covariate to estimate the
intervention effect for each domain.

I. Introduction

Pre-test—post-test cluster randomized trials are common in educational intervention
studies because researchers cannot control students’ class assignment, although random
assignment sometimes occurs at the student level as well (Raudenbush, 1997). Thus,
study designs have multilevel data in which teachers, classes or schools are randomly
assigned to intervention. One of the commonly used methods for detecting an
intervention effect involves controlling pre-test scores and other related covariates when
estimating the intervention effect at post-test (e.g., Aitkin & Longford, 1986; Goldstein,
2003, ch. 2).

Students’ ability scores at pre-test and post-test are vulnerable to measurement error,"
and ability is often measured with a set of items. It has been shown that ignoring
measurement error in a response variable (i.e., post-test scores) and a covariate (i.e., pre-
test scores) leads to biased parameter estimates. The bias is due to attenuation from
measurement error in the response variable (e.g., Carroll, Ruppert, Stefanski, &
Crainiceanu, 2006, ch. 15; Fox, 2004). Measurement error in the covariate is also
responsible for biased parameter estimates and loss of power to detect relationships
among variables (Bryk & Raudenbush, 1992; Carroll et al., 2006; Fox & Glas, 2003;
Goldstein, Kounali, & Robinson, 2008; Rabe-Hesketh, Skrondal, & Pickles, 2004). In
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detecting an intervention effect controlling pre-test scores, the effects of pre-test scores
can be biased in the presence of measurement error in pre-test scores (e.g., Lidtke, Marsh,
Robitzsch, & Trautwein, 2011). However, for the intervention effect, previous research
has shown that covariate measurement error is a problem only for non-experimental
designs with groups that differ in average covariate value in analysis of covariance (e.g.,
Culpepper & Aguinis, 2011; Porter & Raudenbush, 1987). When there is no group
difference in pre-test scores, bias in the intervention effect estimate may not be of concern
in the presence of measurement error in pre-test scores (Cho & Preacher, 2015). The
assumption that there is no group difference in pre-test scores must be tested. Item
response models can be used to model the relationship between ability and the set of
individual items when ability cannot be measured perfectly.

In addition, students’ outcomes in the evaluation of intervention studies often involve
multiple domains even though the test is supposedly unidimensional. The multiple-
domain design provides the possibility of detecting intervention effects for each domain
and thus facilitates diagnostic interpretations of the results. To do so, separate
unidimensional item response models can be fitted to obtain item response theory
(RT) scale scores and an intervention effect on the scale of each domain. However, this
approach can lead to inaccurate results when the number of test items related to each
domain is small (e.g., de la Torre, Song, & Hong, 2011).

Multilevel multidimensional item response models (MMIRMs; Muthén & Asparouhov,
2013; Rabe-Hesketh et al., 2004) allow for explicitly modelling measurement error and
IRT subscoring for multilevel data. The MMIRM provides the opportunity to model latent
variables with multiple observed items to reduce the effects of measurement error. In
addition, multiple latent variables for multiple domains are modelled, and the linear
relationship between the domain-specific latent variables can be obtained at each level of
multilevel data in the MMIRM.

Measurement error adjustment is achieved by applying the MMIRM to response
variables and covariates. Up to this point, MMIRMs have been mainly applied to response
variables (see Muthén & Asparouhov, 2013, sections 7 and 8). There are examples of
researchers correctly accounting for measurement error in covariate(s) using unidimen-
sional item response models (Battauz & Bellio, 2011; Fox & Glas, 2003). There are also a
few examples of measurement error adjustment in response variables and covariates.
Raudenbush and Sampson (1999) used a multilevel Rasch model to control for
measurement error in both response variables and covariates. Rabe-Hesketh et al.
(2004, equation 18, p. 180) specified the linear predictor in a generalized linear model for
measurement error adjustment in response variables and covariates in multilevel data.
‘When a measurement model is specified for both response variables (i.e., post-test scores)
and covariates (i.e., pre-test scores), latent variables for the covariates are used to explain
latent variables for response variables at each level of the multilevel data. This makes
symmetric score mapping possible between post-test scores and pre-test scores.’
However, to our knowledge, the multidimensional specification of the linear predictor
with a logit link or probit link (two-parameter MMIRM) has not been applied to adjust
measurement error in a response variable and a covariate.

When an MMIRM as a latent covariate > (i.e., a pre-test model) is added to an MMIRM as
aresponse variable (i.e., a post-test model), other manifest covariates including a grouping

2 The authors thank the reviewer of a previous version of this paper for clearly pointing out this modelling feature.
3 We define the term latent covariate as a covariate measured with measurement error, in contrast to a manifest
covariate measured without measurement error.
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variable for the intervention (i.e., a control group vs. a treatment group) and demographic
variables can be added to account for the ability parameters of the post-test model in a
structural model. All parameters in the measurement models and the structural model can
be estimated simultaneously in explanatory item response modelling (De Boeck & Wilson,
2004) or generalized multilevel structural equation modelling (McDonald, 1993; Muthén,
1994; Rabe-Hesketh et al., 2004).

The purpose of this paper is to present a model specification that includes a two-
parameter MMIRM in which measurement error is corrected for a response variable and a
covariate at each level of the multilevel data structure. The MMIRM in this study is an
MMIRM with a multilevel latent covariate (MMIRM-MLC). The rest of this paper is
organized as follows. First, we specify an MMIRM-MLC and describe parameter estimation.
Then we present an empirical study for applications of the MMIRM-MLC, followed by a
simulation study to evaluate an MMIRM-MLC and to compare its performance with other
approaches using the total scores. We conclude with a summary and discussion.

2. MMIRM with a multilevel latent covariate

In this section an MMIRM-MLC is described, with a measurement model and a structural
model, for binary responses. Crossed and nested data structures are possible in multilevel
item response data at pre-test and post-test. If every item is offered to all individuals and
every individual responds to all items, the item and individual classifications are found at
the same level, and they are crossed. In addition to the crossed design, there is a multilevel
design in which individuals (e.g., students) are nested with clusters (e.g., teachers). To
frame this data structure within the multilevel literature (e.g., Bryk & Raudenbush, 1992),
item responses at level 1 are cross-classified with individuals and items at level 2.
Individuals are nested within clusters at level 3. The model description is limited to a
between-item design in which an item is loaded on one dimension or latent variable for
subscoring.

A measurement model, an MMIRM, for correct item responses at post-test (denoted by
a subscript 2) is as follows, assuming that there is no evidence of measurement bias
regarding clusters and groups (e.g., control and treatment groups):

P(yojei = 1|02, 02¢) = @loz; - (0o + O22) — Bl (1)

where ® denotes the standard normal cumulative distribution function, j is an index for an
individual (j = 1,...,J), k is an index for a cluster (& = 1,..., K), 7 is an index for an
item (Z=1,...,1), d is an index for a dimension (i.e., domain) (d=1,...,D),

Vajei = [Vajrits- - o Vajrias- - - yzjkiD]’ are item responses across domains at post-test,
02k « 1 = 0271, - > O2jkar- - 02p]” are multidimensional latent variables at level 2,
020 x 1> = 0221, - > O20a,- - -,022p)’ are multidimensional latent variables at level 3, a,,

a x py are item slopes or item discrimination parameters at post-test, and ;s « p)
are item intercepts or item difficulty parameters at post-test. 0, and 0, are assumed
to follow a multivariate normal distribution, 0 ~ MNOp « 1,21 « py and
0. ~ MN(Op » 19,2200 = py), respectively.

A measurement model, an MMIRM, for correct item responses at pre-test (denoted by a
subscript 1) is as follows, assuming that there is no evidence of measurement bias
regarding clusters and groups:
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P 1jeil01jie; 01) = Plor; - (Oue + 1) — Buil, (2)

where Yie; = [Vijritse - o Vijeias - - yljkw]’ are item responses across domains at pre-test,
Oued < 1 = 011, - O1ras- - -01ep) are multidimensional latent variables at level 2, 0,
@ x 1= 0121, - 0120 - -,.012p]" are multidimensional latent variables atlevel 3, o, » )
are item slopes or item discrimination parameters at pre-test, and B, x p) are item
intercepts or item difficulty parameters at pre-test. 6, and 0, are assumed to follow a
multivariate normal distribution, 0y, ~ MNOyp « 1)Z30m x py and Oy ~ MN
(M = 1924 = by, respectively, where oy x 1y = [His- - - Has- - Upl” are intercepts of
latent variables (i.e., grand mean).

A structural model for person parameters atlevel 2 (e.g., the student level) is as follows:

Oz = yo + v1- Oy + Z?(nﬂ) “Lien + Ejk; (3)

n=1

where Zj, ..o « 1 is the nth covariate for an individual j nested with a cluster & at level 2,
Yoo x 15 = [Yois - »Yoas- - »Yopl  are intercepts at level 2 (fixed to Os to identify the
modeD, v1p x py = diagl¥i1,. - -, Y1a- - - Y10l are the effects of the pre-test score at level 2,
Yar + o x »y = diag[Ya + 11y- - Y + Das- - Y + ppl’ are the effects of covariates
Zipe, a0 500 x 1) = [€2/015- - E2jR0a> - .,ezjkD]’ are residuals of post-test latent scores at
level 2, assumed to follow MN(Op « 15,25 x py)-

A structural model for person parameters atlevel 3 (e.g., the teacher level) is as follows:

O = 8o + 81O + 02 TRT. + Y Sms2) Ziem + E2a; (4)

m=1

where TRT,p x 1y iS a covariate of an intervention condition with a value of 0 for
members of the control group and a value of 1 for members of the treatment group, Z, ,,,
@ = 1 is the mth covariate for a cluster & at level 3, dop « 15 = [O01,- - -s00a- - -,00p]’ are
intercepts atlevel 3 (i.e., grand mean), d,p » py = diag[d;y,. . .,014. - .,01pl’ are the effects
of the pre-test score at level 3, 02 x py = diag[da,. . .,024- - -,02p]” are the intervention
effects atlevel 3, 8¢, + 250 x 15 = [Otm + 215 - »Om + 2yas- - +Oam + 2pl’ are the effects of
covariates Zy ,,,, and &xpp x 1y = €201, - E20a>- - E22p] are residuals of post-test latent
scores at level 3, assumed to follow &xxp « 19 ~ MNOp « 19,260 x DY-

Adding the two structural models (equations 3 and 4) to the measurement model for a
posttest (equation 1), the model for correct item responses across domains
Yojer = Waperts- - - V2jriar- - -V2eip)) leads to the following:

Paji) =Plozs - {(vo + 71 - O + Z Vont1) Zjen + E2e)

(5)
+ (00 + 0101 + 02 - TRT + 25(m+2) “Zrm + &)} — Bl
m=1

To identify the model, the y, are set to Os, and variancesin X3, »« pyandZsp < pyG.e.,
variances at the student level for the pre-test and residual variances at the student level for
the post-test, respectively) are set to 1s. Alternatively, the item discrimination for one of
the items (e.g., the first item) in each dimension can be set to 1 instead of setting variances
to 1 to identify the scale unit of the parameters. Variances at the teacher level can be
estimated for the pre-test and post-test because the same item discriminations are used
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over levels (assuming no cluster bias). See the online supporting information (Appendix
S1) for a diagram depicting the MMIRM-MLC for person parameters with two domains.

2.]. Comparisons with other approaches to measurement error adjustment
Measurement error adjustment using the MMIRM-MLC is different from measurement
error adjustment methods in previous structural modelling approaches in which specific
assumptions are made about the distributional structure of the unobserved variables.
A description of those differences follows.

First, measurement error in the MMIRM-MLC is adjusted for a response variable and a
covariate simultaneously, as in Rabe-Hesketh et al. (2004) and Raudenbush and Sampson
(1999). Specifically, this simultaneous approach allows us to detect the group difference
on the error-free latent variable scale (i.e., the ability parameter in IRT is equal to an
(unbiased) estimator minus (random) error) at post-test, by controlling for the possible
measurement error in the pre-test scores and by mapping pre-test scores and post-test
scores on the latent variable scales. However, in previous studies, measurement error was
mainly adjusted for the response variable (e.g., Fox, 2004) or for the covariate (e.g.,
Battauz & Bellio, 2011; Carroll et al., 2006; Fox & Glas, 2003; Goldstein et al., 2008). That
is, in these previous applications, either a measurement model for the response variable
(e.g., equation 1 or a classical true score model) or a measurement model for the covariate
(e.g., equation 2 or a classical true score model) was used.

Second, a set of multiple items is used to correct for measurement error in the covariate
using item response models in the MMIRM-MLC (see equations 1 and 2). That is, the set of
multiple items at level 1 in the MMIRM-MLC is used for correcting for measurement error
at the individual level and at the cluster level. This approach is different from previous
approaches to correcting for measurement error in the covariate, including Carroll et al.
(2006) and Goldstein et al. (2008). These previous studies used a classical true score
model for total scores (only at the individual level).

Third, measurement error adjustment in the MMIRM-MLC is done at each level of the
multilevel data. Specifically, multiple items for each domain (indicated by ) are modelled
for a latent variable at level 2 (0y,,,) and a latent variable at level 3 (0,4, to correct for
measurement error in the pre-test scores. Further, multiple items for each domain are used
for a latent variable at level 2 (05,) and a latent variable at level 3 (0,,) to correct for
measurement error in the post-test scores. The group differences, the intervention effects
(0, in equation 5), can be detected on the error-free latent variable scale, 0,;,,. Raudenbush
and Sampson (1999) used multiple items at level 1 to measure constructs at level 2 within
level 3 as in the MMIRM-MLC. However, they did not include item discriminations at level
2 (such as a,, and a,, in the MMIRM-MLC) or regressions among the latent variables (such
as y; and ¢; in the MMIRM-MLO).

2.2. Measurement invariance test

In multiple-measurement (or longitudinal) multilevel data arising from multiple groups,
there are at least three sources of measurement invariance to test: across time, across
clusters, and across groups (e.g., control and treatment groups). The measurement
invariance assumption across time points is not necessary when a pre-test score is used as
a proxy variable for unobserved factors that predict or explain future attributes (e.g.,
Lockwood & McCaffrey, 2014). Further, it is possible that item discrimination(s) can be
different for an individual-level latent variable and for a cluster-level latent variable in
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multilevel item response models. This possibility, called cluster bias (Jak, Oort, & Dolan,
2013), can be investigated by testing whether item discriminations are equal over levels.
Finally, invariance across groups is necessary for comparing group means (Bejar, 1980).
Item response models to test cluster bias and group bias are described in the online
supporting information (Appendix S2).

Two models are compared to test cluster bias: (1) a cluster invariance model, in
which item discriminations over levels 2 and 3 are the same; and (2) a cluster bias model,
in which item discriminations over levels 2 and 3 are different. Three invariance models
are compared to investigate the measurement invariance across groups (e.g., Vanden-
berg & Lance, 2000; Widaman & Reise, 1997): (1) a configural invariance model, in
which all item parameters are estimated simultaneously in each group under the same
factor structures; (2) a weak invariance model, in which only discrimination parameters
are constrained to be equal across groups; and (3) a strong invariance model, in which all
item parameters are constrained to be equal across groups.

3. Parameter estimation and model evaluation

Bayesian analysis was chosen to fit MMIRM-MLCs and the (multigroup) multilevel
longitudinal item response model to test measurement invariance assumptions. In
(hierarchical) Bayesian analysis, it is possible to sample complex and high-dimensional
posterior densities with Markov chain Monte Carlo (MCMC) methods through sampling
from the conditional distributions of parameters without numerical integration. In this
study, WinBUGS 1.4.3 (Spiegelhalter, Thomas, Best, & Lunn, 2003) was used to
implement MCMC.

For the MMIRM-MLC, joint posterior distributions for parameters 3 = {ay,%2,81,82,70,
Y1,Y0 + Dar00,01,0Gm+25, 1,012,018 200, 200,23, 2.4, 25,26 can be rewritten as

P(S1jki, Vajei) <P V1jeil3)P(V2jeil )
{P(o1)P(a2)P(By)P(B2)P(0)P(v1)P (¥ 1 1)) P(80)P(01)P(8(m2) ) P (1) }
{P(01]0,23)P(01£0, Z4) P (2|0, Z5 ) P (2] 0, Zg) }
{P(Z3)P(Z4)P(Z5)P(Z6) },
(6)

where P(y1,19) is a likelihood function of item responses across domains for pre-test,
P(¥2%;19) is a likelihood function of item responses across domains for post-test, the
probabilities in the first braces indicate prior distributions of fixed parameters, the
probabilities in the second braces indicate prior distributions of latent variables, and
the probabilities in the third braces indicate hyperprior distributions of population
parameters of the latent variables. A similar specification was also applied to the
(multigroup) multilevel longitudinal item response model to test measurement invariance
assumptions across clusters and groups.

Priors for all fixed effects in a structural model for person parameters (except y, to
identify the model) and item difficulty parameters were set as N(0,0.1) in WinBUGS. Item
discrimination parameters were set to N(0,1) truncated at O i for a1; and ay;, respectively,

“The specification in WinBUGS is N(0,1)1(0,) where 1 is a variance.
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to have stable item discrimination parameter estimates (e.g., Béguin & Glas, 2001, for the
normal ogive multidimensional item response model). To match the priors on X3 « py
and X5 « p, with the model identification constraints, variances in the variance—
covariance matrix were set to 1 and the priors on correlation coefficient parameters were
set to Uniform(—1,1). Prior and hyperprior distributions for other parameters were
specified in WinBUGS as follows:

01 ~ MN(0(p 1), Z4(p 1))
&p ~ MN(O(DX 1) E6(D><D)))

Zi(pxp) ~ Wishart(R,v),R = Ip,v = D,and
Y6(px p) ~ Wishart(R,v),R = Ip,v = D.

Ip denotes the unit matrix of size D, and the degrees of freedom v in the Wishart
distribution are set to D as the rank of 6 and ¢ to represent vague prior knowledge (the
mean and variance in the prior distribution on elements in X4 » pyand X4p » py are 2
with R=I). Similar priors and hyperpriors for fixed parameters and random effects were
chosen for item and person parameters of the (multigroup) multilevel longitudinal item
response model to test measurement invariance assumptions across clusters and groups.

In order to ensure that stable parameter estimates are obtained, Gelman and Rubin’s
(1992) method was chosen as implemented in WinBUGS. Using the results of the
convergence checking, initial samples are discarded (‘burn-in”) and posterior means or
medians and standard deviations (i.e., Bayesian standard errors) calculated from
subsequent iterations.

3.1. Bayesian model fit

Competing models (i.e., measurement invariance models, unidimensional vs. multidi-
mensional model) were compared using a relative fit criterion, the deviance information
criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002; see also Verhagen & Fox,
2013). A smaller DIC represents a better fit of the model, and a difference of <5 or 10 units
between models does not provide sufficient evidence for favouring one model over
another (Spiegelhalter et al., 2003). The DIC can be calculated easily by specifying the log-
likelihood along with a model specification in WinBUGS.

In addition, the adequacy of the fit of the MMIRM is evaluated by comparing observed
and posterior predictive score frequencies (e.g., Béguin & Glas, 2001) with posterior
predictive model checking (Rubin, 1984). In addition to the overall model evaluation
using the posterior predictive frequencies, item fit and person fit were considered
individual checks. Standardized residuals (Spiegelhapter, Thomas, Best, & Gilks, 1996)
were considered as a discrepancy measure. Item fit was calculated as the mean of the
standardized residuals over persons, and person fit was calculated as the mean of the
standardized residuals over items. Posterior predictive p-values (ppp-values; Meng, 1994)
for the person fit (Glas & Meijer, 2003) and item fit (Sinharay, 2005) were calculated.
Values around .5 indicate that a person or an item fits well to the data while values close to
zero or 1 indicate misfit (Gelman & Meng, 1996). We consider ppp-values smaller than
.025 orlarger than .975 as extreme values indicative of misfit at the 5% level (e.g., Sinharay,
2005).
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4. Empirical illustration

Data for the current study were gathered as part of a larger efficacy trial for enhanced
anchored instruction (EAD. The experimental instruction was designed to improve the
mathematics skills of middle and high school students, especially those with learning
difficulties in maths (MD). The design of the efficacy trial was a pre-test—post-test cluster
randomized trial. Schools, rather than classes or students, were randomly assigned to EAI
and business as usual (BAU) because the research team did not have control over the
students’ class assignment. In this illustration, we evaluate an instructional intervention
called EAl and its impact on students by showing the effect of intervention using an MMIRM-
MLC. Our purpose for conducting the analysis was to answer the following question: If the
intervention effect is detected, is it possible to interpret it across cognitive skill areas?

4.1. Teacher and student samples

Twenty-four urban and rural middle schools in the southeastern United States participated
in the study. Half were randomly assigned to EAI and BAU. Each school had one
participating inclusive maths classroom, although one school had two participating
classrooms. Teachers in both conditions were comparable in terms of gender (mostly
female), ethnicity (mostly white), education level (well educated), and years of
experience (Bottge, Ma, Gassaway, Toland, Butler, & Cho, 2014). In our study, one
inclusive maths class from each school was sampled, with the exception of one school
that had two inclusive maths classes. Therefore, a two-level data structure (students
nested within 25 teachers) was used because there was only one school for which we
needed to be concerned about clustering at the school level. The smallest number of
students analysed for a teacher was 7, and the largest was 28. The average cluster size was
17.84.

Roughly equal numbers of students in each condition had an identified MD: 62 (28%) of
223 in EAland 72 (29%) of 248 in BAU. Of the initial sample, 25 students did not respond to
all items in the pre-test or post-test. As a result, 232 BAU (29% MD) and 214 EAI (26% MD)
remained in the final sample. Based on chi-square tests of equal proportions, students
were comparable across instructional conditions in gender, ethnicity, subsidized lunch,
and disability area, and teachers were comparable in both conditions in terms of gender
(mostly female), ethnicity (mostly white), education level (well educated), and years of
experience (Bottge et al., 2014). Bottge et al. (2014) found that there was no EAl and BAU
group difference on the pre-test total score scales.

4.2. Measure: Fraction computation test

The researcher-developed test, the fraction computation test, administered at the pre-
test and post-test, was used in the current study to illustrate MMIRM-MLC. The test
comprised 20 items assessing students’ ability to manually add and subtract fractions.
Item features differed in several ways: (1) addition or subtraction; (2) like
denominators (4 4) or unlike denommators (82 + 2 2), (3) simple fractions
(% 3) or mixed numbers (4-L iG + + 2), and (4) two stacks (1/ 1) or three stacks
(i.e., one more stack in the two- Stack example). There were a total of 42 points on the
test. For 18 of the 20 items, students could earn 0, 1 or 2 points. On two items,
students could earn 3 points if they simplified the answer (i.e., revised the fraction to
simple terms). Inter-rater agreement was 99% on the pre-test and 97% on the post-test.
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Less than 1% of students in the sample received partial scores (i.e., score 1 for 18 of
the items and scores 1 or 2 for two of the items) on any of the items on the test. Thus,
in this paper, binary responses were considered, 1 for correct responses and 0 for
incorrect responses. Partial scores were also considered as incorrect responses. There
were no missing item responses in the final sample of 446 students for analysis.

4.3. Analysis and results

To answer the research question using the MMIRM-MLC, our analysis proceeded as
follows. All codes, including the model specification in WinBUGS used in the current
analyses, are available from the first author upon request.

4.3.1. Step |: Determining distinct domains

As shown in Table 1, each item had four item attributes. In order to find the most distinct
item feature for domain scoring, we compared a set of exploratory factor analyses using
polychoric correlations with Bayes estimator (GIBBS(PX1) option) at each time point

Table 1. Fit Indices from Exploratory Factor Analyses Extracting 1 and 2 Factors and (GEOMIN
Rotated) Factor Loadings for a 2-Factor Solution.

Model fit

Pre-test Post-test
1-Factor 2-Factor 1-Factor 2-Factor
ppp-value 0.399  0.443  0.401  0.453

Factor loadings

Attributes Pre-test Post-test
Item Operation Denominator Type Stacks Factor1 Factor2 Factor1l Factor 2
1 Addition Like Simple 2 0.640 0.354 0.651  0.080
2 Addition Like Simple 2 0.610 0.216 0.678 0.201
3 Addition Unlike Simple 2 —-0.135 1.048 —0.265 1.075
4 Addition Unlike Simple 2 —0.186 1.067 —0.231 1.029
5 Addition Unlike Simple 2 0.000 0.965 —0.189 1.024
6 Addition Unlike Simple 2 —0.026  0.985 —0.214 1.054
7 Addition Unlike Mixed 2 —0.132  1.034 0.007  0.940
8 Addition Unlike Mixed 2 0.041  0.912 0.087  0.900
9 Addition Unlike Mixed 2 0.007  0.946 0.062  0.930
10 Addition Unlike Mixed 2 0.032  0.939 0.007  0.924
11 Addition Unlike Simple 3 0.089  0.902 0.063  0.886
12 Addition Unlike Simple 3 0.092  0.902 0.052 0.921
13 Addition Unlike Mixed 3 0.065 0.901 0.084 0.916
14 Addition Unlike Mixed 3 0.004 0.924 0.005  0.924
15 Subtraction Like Simple 2 0.888  0.032 0.883 0.087
16 Subtraction Unlike Simple 2 0.137  0.871 0.160 0.851
17 Subtraction Like Mixed 2 0.804 0.097 0.731 0.085
18 Subtraction Unlike Mixed 2 0.456 0.698 0.002 0.752
19 Subtraction Unlike Mixed 2 0.235  0.772 0.212 0.804
20 Subtraction Unlike Mixed 2 0.397 0.557 0.096  0.737

Note. Bold factor loadings are significant at 5% level.
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using Mplus version 7.11 (Muthén & Muthén, 1998-2014). The model fit of the
exploratory factor analyses was evaluated based on posterior predictive model checking
with a summary measure of fit, the likelihood-ratio chi-square statistic. Corresponding
ppp-values were calculated for each factor solution; ppp-values around .5 indicate that the
observed pattern would likely be seen in replications of the data if the model were true.

Table 1 shows the model fit results at each time point for a one-factor and two-factor
solution and (GEOMIN rotated) factor loadings for a two-factor solution. According to the
ppp-values, the one-factor model provided a good fit to the data according to the criteria at
each time point. However, there was an improvement in model fit with the two-factor
model at each time point. Shifting from the one-factor to the two-factor model produced
noteworthy decreases in residual variances for four /ike items that loaded on the first
factor, especially at the post-test. Factor loadings were clearly clustered regarding like
items versus unlike items. As reported in Table 1, the like items (items 1, 2, 15 and 17)
were highly loaded on factor 1 while the unlike items were highly loaded on factor 2 at the
pre-testand post-test. Moderate (GEOMIN) factor correlations of .585 and .497 for the pre-
test and post-test, respectively, indicated that two factors can provide two scores with
distinct meaning. Based on these results, we chose the two-factor model with a between-
item design where an item loaded on the /ike factor or unlike factor for domain scoring.
When there is evidence of a second dimension on a specific skill domain, having a two-
factor model yields diagnostic interpretations as compared to a one-factor model.

4.3.2. Step 2: Selecting the measurement model
Intraclass correlations (ICCs) were calculated to investigate the multilevel structure of the
data using the data at each time point. The ICC for the observed outcomes for each item
(e.g., Muthén & Asparouhov, 2013) ranged from .058 to .297 for the pre-test and from .071
to .347 for the post-test, based on results of the two-parameter multilevel unidimensional
normal ogive model at each time point. A common rule of thumb is that ICCs over .05
indicate the necessity of multilevel analysis (e.g., Jak et al., 2013). According to the rule of
thumb, there is non-ignorable dependency due to clusters (teachers). Accordingly, the
MMIRM was chosen as a (multilevel) measurement model for the pre-test and post-test.
Table 2 reports summary information about the standard deviation (i.e., Bayesian
standard error) of 6 estimates from MMIRM and within and between reliability of the total
scores (Geldhof, Preacher, & Zyphur, 2014) for each domain at pre-test and post-test. This
information presents evidence that there was non-ignorable measurement error on both
the latent variable scale and the total score scale.

4.3.3. Step 3: Checking measurement invariance

From step 1, a two-factor model was chosen to provide diagnostic interpretations based
on the specific skill domain, even though there is evidence that the one-factor model fitted
relatively well compared to the two-factor model. For measurement invariance checking,
the one-factor model was estimated to check the measurement invariance over the
clusters (i.e., teachers) and groups (i.e., BAU vs. EAI, non-MD vs. MD).

Table S1 in the online supporting information presents the measurement models, their
constraints, and DIC values for three invariance models for clusters and groups. The ‘burn-
in’ period ranged from 4,000 to 6,000 for invariance models in the MCMC analyses.
Posterior means were used for calculating the DIC. Differences in the DIC values between
cluster bias and cluster invariance models were <5, so that the cluster invariance model
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Table 2. Measurement error information for IRT scale scores of MMIRM-MLC and for total scores

Pre-test Post-test

Like Unlike Like Unlike

IRT-based: Descriptive information for standard deviation of 0 estimates
Student level

Mean 0.80 0.49 0.71 0.45
SD 0.12 0.26 0.18 0.24
Min. 0.44 0.33 0.43 0.35
Max. 0.99 0.75 1.09 0.76
Teacher level
Mean 0.77 0.45 0.58 0.39
SD 0.06 0.07 0.05 0.07
Min. 0.61 0.62 0.48 0.31
Max. 0.83 0.78 0.63 0.52
Total score-based
Within reliability 0.43 0.69 0.50 0.70
Between reliability 0.56 0.69 0.51 0.74

was chosen as the simpler model. Given the cluster invariance model, group invariance
tests were investigated. A weak invariance model was chosen for BAU versus EAI and non-
MD versus MD.

‘Whether BAU and EAI or non-MD and MD can be scored and compared on the same
scale in the presence of weak invariance violation was checked by comparing the
correlations between the scores from the two MMIRM-MLC models (without any manifest
covariates) with weak invariance and strong invariance assumptions. The correlation
coefficients of the scores from the two MMIRM-MLC models for BAU and EAI and for non-
MD and MD were highly correlated (>.927). This indicates that the relative ordering of
persons’ scores did not change much when measurement weak invariance was ignored
for BAU and EAI or non-MD and MD. In addition, the results in the group mean differences
(i.e., BAU and EAI or non-MD and MD) were similar between the two MMIRM-MLC models
with weak invariance and strong invariance assumptions. Thus, in the following analysis, a
strong invariance model for BAU and EAI or non-MD and MD was assumed.

4.3.4. Step 4: Adding covariates to the measurement model and model evaluation
Now the MMIRM-MLC was fitted to answer the research question by adding an
intervention condition covariate to the measurement model. The model is called MMIRM-
MLC model 1. MMIRM-MLC model 2 is MMIRM-MLC model 1 plus student-level and
teacher-level demographic information.

A burn-in of 4,000 iterations was used for all parameters of MMIRM-MLC models 1 and
2, based on Gelman and Rubin’s (1992) statistic with three chains. The 10,000 post-burn-
in iterations were obtained to calculate posterior moments. Monte Carlo errors for all
parameters in all analyses were less than about 5% of the sample standard deviation. All
95% posterior intervals included the observed data, which indicates that MMIRM-MLC
models 1 and 2 was appropriate for the data. The ppp-values for all items at pre-test and
post-test were between .025 and .075, indicating that the items were a good fit to the data.
In MMIRM-MLC model 1, there were 8% and 7% of persons with ppp-values >.075 for the
pre-test and post-test, respectively, indicating a misfit in this model. In MMIRM-MLC model
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2, there were 8% and 6% of persons with ppp-values >.075 for the pre-test and post-test,
respectively. They all were at the lower end of the score distribution.

Table 3 shows the item parameter estimates of MMIRM-MLC model 1.° Item parameter
estimates of MMIRM-MLC model 2 were similar to those of MMIRM-MLC model 1. At the
pre-test and post-test, items vary in terms of item discriminations and difficulties, and
items that have a like denominator were less discriminating and less difficult than items
that have an unlike denominator.

4.4. Answers to research question

Table 4 presents the results of MMIRM-MLC models 1 and 2 for person parameters. The
change in significance and magnitude of the intervention effect was small when other
demographicinformation for the students and teachers was added to MMIRM-MLC models
1 and 2. For illustration purposes, the results of MMIRM-MLC model 2 with two student-
level covariates (MD and gender) and one teacher-level covariate (years of teaching special
education) are shown in Table 4. Covariates were coded as follows: BAU (coded as 0) and
EAI (coded as 1) groups, non-MD students (coded as 0) and MD students (coded as 1),
female students (coded as 0) and males students (coded as 1), and mean-centred years of
teaching general education (M = 11.1, SD = 7.7).

In Table 4, ‘L.TRT’ and ‘U.TRT’ represent the estimated difference between the means
of the EAI and BAU post-test scores for a like domain and an unlike domain, respectively,
adjusted for the pre-test scores on the post-test scores. In MMIRM-MLC model 1, the pre-
test score effects on the /ike domain and the unlike domain were statistically significant at
the student level and at the teacher level. Significant intervention effects were found for
like and unlike domains (i.e., 0.890, credible interval [CI] [0.506, 1.499], for the like
domain and 1.039, CI [0.601, 1.471], for the unlike domain). Specifically, the EAI group
performed 0.890 higher than the BAU group for the like domain and the EAI group
performed 1.039 higher than the BAU group for the unlike domain. In MMIRM-MLC model
2, the effects of student-level and teacher-level covariates were not significant and the
effects of pre-test scores and the group difference between the EAI and BAU groups were
similar to those of MMIRM-MLC model 1.

4.5. Result comparisons across different approaches for measurement error treatment
An MMIRM with multilevel manifest covariate (MMC) and a multilevel model (MM,
specifically a multilevel multivariate random intercept model) with MLC were fitted to
the same empirical data to show the consequences of ignoring measurement error in a
covariate or a response variable. Measurement error in pre-test scores (covariate) is
ignored in the MMIRM-MLC, whereas measurement error in post-test scores (response
variable) is ignored in the MM-MLC. In the MMC of the MMIRM-MMC, pre-test total
scores (ZLI Yyria = Yijra) Were decomposed into within pre-test total scores
O1je.a—Y1.0.a, Where yq 4 is a cluster mean) and between pre-test total scores (V1 x.o)
for each domain. For the multilevel (linear) model, post-test total scores
(Zle Yajria = Y2je.a) Were used for each domain. In these two models, pre-test scores
and an intervention condition were considered covariates as in MMIRM-MLC model 1.

> As shown in equations 1and 2, the item parameters havean I x D vector. With a between-item design, all items
have one set of item parameters for the dimension d. In the table, the item parameter estimates are presented in
one column for simplicity.
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The MMIRM-MLC and MM-MLC are specified in the online supporting information
(Appendix S3). WinBUGS was used to fit the MMIRM-MLC and MM-MLC with priors and
hyperpriors comparable to those used in MMIRM-MLCs.

Table 4 presents the results for the MMIRM-MLC and MM-MLC. Pre-test effects and
intervention effects were standardized on their relevant scale for comparison among the
three models, MMIRM-MLC model 1, MMIRM-MLC model 2 and MM-MLC. Table S2 in the
online supporting information shows the standardized estimates of the three models,
based on results presented in Table 4. Compared to the standardized effects of pre-test
scores in MMIRM-MLC model 1, pre-test effects were underestimated in the MMIRM-MMC
and MM-MLC. The effects of standardized intervention conditions were similar between
the MMIRM-MMC and MMIRM-MLC model 1. However, intervention effects were
underestimated in the MM-MLC.

5. Simulation study

A simulation study was designed to examine parameter recovery of the MMIRM-MLC
under Bayesian estimation using WinBUGS in various multilevel designs when the
population data-generating model is an MMIRM-MLC. In addition, the results of pre-test
effects and intervention condition effects were compared across the MMIRM-MLC,
MMIRM-MMC and MM-MLC to show the consequences of using total scores when the
population data-generating model is MMIRM-MLC model 1. WinBUGS was used to fit the
MMIRM-MLC and MMIRM-MMC (see the online supporting information [Appendix S3] for
a description of the MMIRM-MLC and MMIRM-MMC).

5.1. Simulation design

We selected simulation conditions that may affect the results of person parameters at the
cluster level, as has been found in the empirical research question (e.g., the effect of the
intervention effect) in previous research (e.g., Ludtke, Marsh, Robitzsch, & Trautwein,
2011; Preacher, Zhang, & Zyphur, 2011). The design includes the number of clusters and
the number of individuals per cluster. The number of clusters was set to K = 24, 50, or
100. A sample of 24 and 50 clusters is common in educational experimental intervention
research, as in our empirical illustration. Examples of large numbers of clusters include
national or international educational assessments such as the National Assessment of
Educational Progress and the Trends in International Mathematics and Science Study.
Accordingly, 100 clusters were chosen. Unlike in our empirical study, balanced cluster
sizes were considered to investigate the effect of cluster sizes, including 7, = 5, 20, or 50,
as used in other multilevel studies (e.g., Preacher et al., 2011). A cluster size of 5 is found
in small group designs (e.g., Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). Given a
selected number of clusters and number of individuals per cluster, the total number of
individuals results in nine different sample sizes, J = 120, 250, 480, 500, 1,000, 1,200,
2,000, 2,500, or 5,000. One hundred replications were simulated for each of the nine
different multilevel designs.

The same number of clusters were assigned to be either a control group or a treatment
group for a balanced design. As in the empirical study, a 20-item test with a between-item
design was considered: Four items for domain 1 and 16 items for domain 2. The item
parameter estimates and person parameter estimates, including an intervention effect that
we obtained in the empirical study, were considered as the true parameters of MMIRM-
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MLC model 1, as reported in Table 4. The ICC varied across items between .058 and .297 at
the pre-test and between .016 and .347 at the post-test.

5.2. Result hypotheses

The MMIRM-MLC was expected to yield the least bias because the population data-
generating model was the MMIRM-MLC. The effects of pre-test scores (y, and ;) and the
effect of intervention (d,) are expected to be different, depending on the treatment of
measurement error in pre-test scores and post-test scores. In the presence of measure-
ment error in pre-test scores as in the MMIRM-MMC, the effects of pre-test scores are
expected to be biased (e.g., Ludtke ez al., 2011). However, the effects of intervention
conditions are not expected to be biased in the presence of measurement error in pre-test
scores when there is no intervention effect at pre-test (Cho & Preacher, 2015). In the
presence of measurement error in response variables as in the MM-MLC, both the effect of
pre-test scores and the effects of intervention can be biased (e.g., Fox, 2004).

5.3. Analysis

The same priors specified earlier were used in the MMIRM-MLC and comparable priors
and hyperpriors used in the MMIRM-MLC were used for the MMIRM-MLC and MM-MLC.
Gelman and Rubin’s (1992) statistic was used to evaluate convergence with three chains.
One replication of each condition was used for convergence checking. No convergence
problems were encountered in any replications for the MMIRM-MLC, except the sample
size condition 7, =5 and K = 24 (total sample size = 120). This non-convergence
problem may be because the sample size is too small to estimate 98 parameters (80 item
parameters (20 items x 4 kinds), 10 structural parameters, and 8 variance or covariance
parameters). Only the converged results are reported below. There were no convergence
problems in the MMIRM-MMC or the MM-MLC. A burn-in of 5,000 iterations was used for
all parameters in the MMIRM-MLC, and a burn-in of 4,000 iterations was used for all
parameters in the MMIRM-MMC and MM-MLC. The same burn-in was set for the other
replications in each condition. An additional 6,000 iterations were obtained to estimate
the posterior moments in the MMIRM-MLC, MMIRM-MMC and MM-MLC. Monte Carlo
errors for all parameters were less than about 5% of the sample standard deviation in all
three models.

Percentage relative bias was calculated to show the accuracy of the parameter
estimates from the MMIRM-MLC, MMIRM-MMC and MM-MLC. It is given by
100 x [(& — 8)/d] as an example. Before calculating percentage relative bias, estimates
of the three models were standardized (see Table S2 in the online supporting information
for the calculation of standardized estimates of the three models based on the empirical
results in Table 4), as an example.

5.4. Simulation results
For the analysis of the MMIRM-MMC, intervention effects were first tested on pre-test total
scores by adding a covariate of an intervention condition to the MMC of the MMIRM-MMC.
No significant intervention effects were found in any conditions in the MMIRM-MMC,
based on a 95% CI test.

Table 5 presents the percentage relative bias for pre-test effects (y; and ;) and
intervention effects (d,) for the MMIRM-MLC, MMIRM-MMC and MM-MLC. The following
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overall patterns in percentage relative bias were observed, as reported in Table 5. First, the
percentage relative bias for pre-test effects was much lower for the MMIRM-MLC than for
the MMIRM-MMC and MM-MLC in all conditions, and it was lower for the MMIRM-MMC
than for the MM-MLC. For the pre-test effect estimate at the individuallevel (3)),
percentage relative bias ranged in magnitude from 0.3 to 18.6 in the MMIRM-MLC, from
—85.1 to —29.9 in the MMIRM-MMC and from —116.0 to —52.7 in the MM-MLC. For the
pre-test effect estimate at the cluster level (d;), the percentage relative bias ranged in
magnitude from 0.3 to 15.8 in the MMIRM-MLC, from —70.8 to —19.1 in the MMIRM-MMC
and from —338.4 to —44.3 in the MM-MLC.

Second, the percentage relative bias for intervention effects was similar between the
MMIRM-MLC and MMIRM-MMC, except for the condition with K = 24 and n, = 5. The
percentage relative bias ranged in magnitude from —12.0 to 0.2 in the MMIRM-MLC and
from —14.6 to 0.9 in the MMIRM-MMC. However, the percentage relative bias for
intervention effects in the MM-MLC was much larger than in the MMIRM-MLC and MMIRM-
MMC. It ranged in magnitude from —107.4 to —49.2.

Third, overall, the percentage relative bias decreased with increasing cluster size (72;,)
and number of clusters (K) for pre-test effects (y; and ) and intervention effects () in all
three models, although there were three conditions that did not have that pattern: 77, = 50
in the MMIRM-MMC for 811, 17, = 50 in the MM-MLC for 611, and 7;, = 50 in the MM-MLC
for 622 .

Table 6 reports the percentage relative bias for fixed parameter estimates (for fixed
parameter estimates not reported in Table 5) and population parameter estimates of
random (residual) effects in the MMIRM-MLC. The degree of bias decreased as the cluster
size (1;,) and number of clusters (K) increased for all parameter estimates. Unlike the item
parameters and population parameters of random (residual) effects, the &, in the MMIRM-
MLC tended to be underestimated when K and 7, decreased.

6. Summary and discussion

This paper has specified the model for detecting the intervention effect when MMIRMs
were used for explicit measurement error modelling in the use of pre-test and post-test
scores. The main application of the MMIRM-MLC presented in this paper was to detect a
more diagnostic intervention effect by estimating the intervention effect for each domain.
In the empirical illustration, a four-step analysis was implemented for applying the
MMIRM-MLC to an instructional intervention study in a pre-test—post-test cluster
randomized trial.

In the simulation study, the accuracy of parameter estimates for the MMIRM-MLC was
investigated in various multilevel designs including a design similar to the empirical study.
Parameter accuracy for the all parameters was acceptable (with an acceptable bias
criterion set to 15%) in all conditions considered in this study for the MMIRM-MLC, except
for conditions with a small cluster size (17, = 5). When using the total scores as a covariate
(i.e., pre-test scores) as in the MMIRM-MLC, unacceptable bias was found in pre-test
effects, whereas acceptable bias was found in intervention effects, except for a condition
with a small cluster size (72, = 5) and number of clusters (K=24). This finding indicates
that measurement error in a covariate may not be problematic in detecting intervention
effects on post-test when there is no intervention effect on pre-test, which is often the case
in cluster randomized trials. On the other hand, in the presence of measurement error in
response variables (i.e., post-test scores), unacceptable bias can be found in both pre-test
effects and intervention effects.
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‘We now discuss the limitations of the current study and future work. First, the unique
application in the current study was to detect the intervention effect for each domain for
its diagnostic value. Sinharay (2010) showed that subscores should meet strict standards
of reliability, and that weak correlation between domain scores has added value in terms of
mean square error in estimating the true subscore. Reliable subscores should be obtained
to make valid inferences about scores in the subtest domains. Lack of sufficient reliability
is a concern when there are a small number of items for a domain. For the current
application, a moderate correlation coefficient between two domain scores was found at
the student level (.691), and a small correlation coefficient was found at the teacher level
(.099). However, there were four items for the /ike domain and 16 items for the unlike
domain. Thus, the reliability of the subscore for the /ike domain can be questioned from a
value-added perspective.

Second, there were two main sources of measurement bias in the empirical study:
clusters and groups. We first tested cluster invariance and then tested the possibilities of
measurement invariance across the groups based on the results of the cluster invariance
test. Itis important to note that this is not the only step for testing invariance. For example,
measurement invariance across groups can be tested first, and then cluster bias can be
investigated. Jak et al. (2013) stated that there is no universally optimal procedure in most
situations, and different procedures generally identify the same items as being biased, but
the power to detect bias may vary. A comparison study with alternative procedures is
needed to determine the Type I error and power to detect measurement invariance in the
use of the DIC.

Third, the simulation study has the same limitations as other simulation studies, that is,
the conditions we considered are limited because the simulation study was mainly
designed to check the accuracy of parameter estimates in various multilevel designs. The
limited conditions include the true parameters and the ICC found from the empirical
study, the number of items for each domain, and the balanced design. More extensive
simulations that vary the limited conditions should be conducted to make solid
generalizations.

Fourth, one may think that a comparison among the MMIRM-MLC, MMIRM-MMC and
MM-MLC approaches is unfair when the population data-generating model is the MMIRM-
MLC. However, we chose the MMIRM-MLC as the population data-generating model for
two main reasons. First, our main interest in comparing the three models was to
investigate the extent to which pre-test effects on total scores or intervention effects on
total scores may produce misleading inferences on an error-free latent construct. In
addition, we were interested in the degree to which the MMIRM-MLC would outperform
the MMIRM-MMC and MM-MLC even though it may be obvious that the MMIRM-MLC
would perform better than the MMIRM-MMC and MM-MLC overall in this situation. Still,
there was no guarantee that the MMIRM-MLC would recover its own parameters well even
when the MMIRM-MLC was the population data-generating model. Indeed, the MMIRM-
MLC would not converge while the MMIRM-MMC would when the sample size was small
(K = 24 and n;, = 5).

To conclude, the present study focused on the empirical illustration of the MMIRM-
MLC and its evaluations in using Bayesian analysis. When measurement error is a concern
in using a response variable and a covariate, the MMIRM-MLC can be an analytic tool for
detecting an intervention effect in pre-test—post-test cluster randomized trials. However,
given the results of the simulation study, the MMIRM-MLC can be used when both the
number of clusters and the cluster size are large enough.
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